Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:
общая лексика
аксиома мощности
математика
аксиома выделения
математика
аксиома фундирования
In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory.
In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:
where y is the power set of x, .
In English, this says:
More succinctly: for every set , there is a set consisting precisely of the subsets of .
Note the subset relation is not used in the formal definition as subset is not a primitive relation in formal set theory; rather, subset is defined in terms of set membership, . By the axiom of extensionality, the set is unique.
The axiom of power set appears in most axiomatizations of set theory. It is generally considered uncontroversial, although constructive set theory prefers a weaker version to resolve concerns about predicativity.